Space-time Finite Elements for Structural Dynamics Analysis

Interaction Structural Dynamics by Finite Elements

FINITE ELEMENT METHOD AND COMPUTATIONAL STRUCTURAL DYNAMICS

Finite Elements in Structural Analysis

Essentials of the Finite Element Method

Finite Element Analysis of Spectral Element Method in Structural Dynamics

Finite Element Methods in Structural Dynamics

An Efficient Method for Solving the Structural Dynamics of Finite Elastic Structures

Containing Discontinuities Using Analytical/numerical Matching with Finite Element Analysis

A Reduction of Finite Elements with Applications on Structural Dynamics

Reduction Methods in Finite Element Analysis of Nonlinear Structural Dynamics

The Finite Element Method in Structural Dynamics with Applications to Earthquake and Moving Load Analysis

Generalized time-space finite element formulation for structural dynamics

Finite Element Analysis Applied to Structural Dynamics and Earthquake Engineering

Elements of Structural Dynamics

Finite Element Methods in Structural Dynamics

Finite Element Model Updating in Structural Dynamics

Matrix Analysis of Structural Dynamics

Stochastic Structural Dynamics

Fundamentals of Structural Dynamics

Multiscale Wavelet Finite Element Analysis in Structural Dynamics

Finite Element Model Updating Using Computational Intelligence Techniques

Special Issue

Finite Element Method in Structural Analysis

Finite Element Methods in Dynamics

P-version Finite Elements in Structural Dynamics and Stability

Finite Element Model Updating Problem in Structural Dynamics

Model Order Reduction Techniques with Applications in Finite Element Analysis

Application of Finite Elements in Time to Structural Dynamics Problems with Geometric Nonlinearities

The Finite Element Method in Engineering

A Generalized Rayleigh-Ritz Method for Structural Dynamics Problems in Conjunction with Finite Elements

The Multiscale Wavelet Finite Element Method for Structural Dynamics

Nonlinear structural dynamics by finite element modal synthesis

The Finite Element Method in Engineering

Adaptive Finite Element Procedures in Structural Dynamics

Search for Efficient Time Integration Methods in Structural Dynamics for Finite Element Meshes with Large Variations of Properties

Finite Element Model Updating in Structural Dynamics Using Design Sensitivity and Optimisation

Fundamental coverage, analytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou's Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanical/structural engineers, Essentials of the Finite Element Method presents a complete reference text for the modern engineer. Provides complete and unified coverage of the fundamentals of finite element analysis Covers stiffness matrices for widely used elements in mechanical and civil engineering practice Offers detailed and integrated solutions of engineering examples and computer algorithms in ANSYS, CALFEM, and MATLABOne of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950's and the engineering applications of stochastic processes in the 1940's provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations. A systematic treatment of stochastic structural dynamics applying the finite
element methods. Highly illustrated throughout and aimed at advanced and specialist levels, it focuses on computational aspects instead of theory. Emphasizes results mainly in the time domain with limited contents in the time-frequency domain. Presents and illustrates direction integration methods for analyzing the statistics of the response of linear and nonlinear structures to stochastic loads. Under Author Information - one change of word to existing text: He is a Fellow of the American Society of Mechanical Engineers (ASME). Uses state-of-the-art computer technology to formulate displacement method with matrix algebra. Facilitates analysis of structural dynamics and applications to earthquake engineering and UBC and IBC seismic building codes. FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and, by critically analysing the state of the art in FEM updating, this book identifies new research directions. Primarily intended for senior undergraduate and postgraduate students of civil, mechanical and aerospace/aeronautical engineering, this text emphasizes the importance of reliability in engineering computations and understanding the process of computer aided engineering. Written with a view to promote the correct use of finite element technology and to present a detailed study of a set of essential computational tools for the practice of structural dynamics, this book is a ready-reckoner for an in-depth discussion of finite element theory and estimation and control of errors in computations. It is specifically aimed at the audience with interest in vibrations and stress analysis. Several worked out examples and exercise problems have been included to describe the various aspects of finite element theory and modelling. The exercise on error analysis will be extremely helpful in grasping the essence of posteriori error analysis and mesh refinement. KEY FEATURES: • Thorough discussion of numerical algorithms for reliable and efficient computation. • Ready-to-use finite element system and other scientific applications. • Tips for improving the quality of finite element solutions. • Companion DVD containing ready to use finite element applications. AUDIENCE: Senior Undergraduate and Postgraduate students of Civil, Mechanical and Aerospace/Aeronautical Engineering. Finite element model updating has emerged in the 1990s as a subject of immense importance to the design, construction and maintenance of mechanical systems and civil engineering structures. This book, the first on the subject, sets out to explain the principles of model updating, not only as a research text, but also as a guide for the practising engineer who wants to get acquainted with, or use, updating techniques. It covers all aspects of model preparation and data acquisition that are necessary for updating. The various methods for parameter selection, error localisation, sensitivity and parameter estimation are described in detail and illustrated with examples. The examples can be easily replicated and expanded in order to reinforce understanding. The book is aimed at researchers, postgraduate students and practising engineers. Spectral Element Method in Structural Dynamics is a concise and timely introduction to the spectral element method (SEM) as a means of solving problems in structural dynamics, wave propagations, and other related fields. The book consists of three key sections. In the first part, background knowledge is set up for the readers by reviewing previous work in the area and by providing the fundamentals for the spectral analysis of signals. In the second part, the theory of spectral element method is provided, focusing on how to formulate spectral element models and how to conduct spectral element analysis to obtain the dynamic responses in both frequency- and time-domains. In the last part, the applications of SEM to various structural dynamics problems are introduced, including beams, plates, pipelines, axially moving structures, rotor systems, multi-layered structures, smart structures, composite laminated structures, periodic lattice structures, blood flow, structural boundaries, joints, structural damage, and impact forces identifications, as well as the SEM-FEM hybrid method. Presents all aspects of SEM in one volume, both theory and applications. Helps students and professionals master associated theories, modeling processes, and analysis methods. Demonstrates where and how to apply SEM in practice. Introduces real-world examples across a variety of structures. Shows how models can be used to evaluate the accuracy of other solution methods. Cross-checks against solutions obtained by conventional FEM and other solution methods. Comes with downloadable code examples for independent practice. Spectral Element Method in Structural Dynamics can be used by graduate students of aeronautical, civil, naval architectures, mechanical, structural and biomechanical engineering. Researchers in universities, technical institutes, and industries will also find the book to be a helpful reference highlighting SEM applications to various engineering problems in
areas of structural dynamics, wave propagations, and other related subjects. The book can also be used by students, professors, and researchers who want to learn more efficient and more accurate computational methods useful for their research topics from all areas of engineering, science and mathematics, including the areas of computational mechanics and numerical methods. Fluid-Structure Interaction: An Introduction to Finite Element Coupling fulfills the need for an introductory approach to the general concepts of Finite and Boundary Element Methods for FSI, from the mathematical formulation to the physical interpretation of numerical simulations. Based on the author’s experience in developing numerical codes for industrial applications in shipbuilding and in teaching FSI to both practicing engineers and within academia, it provides a comprehensive and self-contained guide that is geared toward both students and practitioners of mechanical engineering. Composed of six chapters, Fluid-Structure Interaction: An Introduction to Finite Element Coupling progresses logically from formulations and applications involving structure and fluid dynamics, fluid and structure interactions and opens to reduced order-modelling for vibro-acoustic coupling. The author describes simple yet fundamental illustrative examples in detail, using analytical and/or semi-analytical formulation & designed both to illustrate each numerical method and also to highlight a physical aspect of FSI. All proposed examples are simple enough to be computed by the reader using standard computational tools such as MATLAB, making the book a unique tool for self-learning and understanding the basics of the techniques for FSI, or can serve as verification and validation test cases of industrial FEM/BEM codes rendering the book valuable for code verification and validation purposes. Structural dynamics is a subset of structural analysis which covers the behavior of structures subject to dynamic loading. The subject has seen rapid growth and also change in how the basic concepts can be interpreted. For instance, the classical notions of discretizing the operator of a dynamic structural model have given way to a set-theoretic, function-space based framework, which is more conducive to implementation with a computer. This modern perspective, as adopted in this book, is also helpful in putting together the various tools and ideas in a more integrated style. Elements of Structural Dynamics: A New Perspective is devoted to covering the basic concepts in linear structural dynamics, whilst emphasizing their mathematical moorings and the associated computational aspects that make their implementation in software possible. Key features: Employs a novel ‘top down’ approach to structural dynamics. Contains an insightful treatment of computational aspects, including the finite element method, that translate into numerical solutions of the dynamic equations of motion. Consistently touches upon the modern mathematical basis for the theories and approximations involved. Elements of Structural Dynamics: A New Perspective is an holistic treatise on structural dynamics and is an ideal textbook for senior undergraduate and graduate students in Mechanical, Aerospace and Civil engineering departments. This book also forms a useful reference for researchers and engineers in industry. Over the recent past, various numerical analysis techniques have been formulated and used to obtain approximate solutions for numerous engineering problems to aid predict the behaviour of systems accurately and efficiently. One such approach is the Wavelet Finite Element Method (WFEM) which involves combining the classical Finite Element Method (FEM) with wavelet analysis. The key desirable properties exhibited by some wavelet families, such as compact support, multiresolution analysis (MRA), smoothness, vanishing moments and the ‘two-scale’ relations, make the use of wavelets in WFEM advantageous, particularly in the analysis of problems with strong nonlinearities, singularities and material property variations present. The wavelet based finite elements (WFEs) of a rod and beam are formulated using the Daubechies and B-spline wavelet on the interval (BSWI) wavelet scaling functions as interpolating functions due to their desirable properties, thus making it possible to alter the local scale of the WFE without changing the initial model mesh. Specific benchmark cases are presented to exhibit and compare the performance of the WFEM with FEM in static, dynamic, eigenvalue and moving load transient response analysis for homogeneous systems and functionally graded materials, where the material properties continuously vary spatially with respect to the constituent materials. A solution formulation of generalized Rayleigh-Ritz method is described and applied to two initial and boundary value problems of stress waves and structural dynamics in conjunction with finite element discretization. Excellent numerical results have been obtained for wave equations associated with lateral and longitudinal vibrations and with strong discontinuities. The Finite Element Method in Engineering is the only book to provide a broad overview of the underlying principles of finite element analysis and where it fits into the larger context of other mathematically based engineering analytical tools. This is an updated and improved version of a finite element text long noted for its practical applications approach, its readability, and ease of use. Students will find in this textbook a thorough grounding of the mathematical principles underlying the popular, analytical methods for setting up a finite element solution based on mathematical equations. The book provides a host of real-world applications of finite element analysis, from structural design to problems in fluid mechanics and thermodynamics. It has added new sections
on the assemblage of element equations, as well as an important new comparison between finite element analysis and other analytical methods showing advantages and disadvantages of each. This book will appeal to students in mechanical, structural, electrical, environmental and biomedical engineering. The only book to provide a broad overview of the underlying principles of finite element analysis and where it fits into the larger context of other mathematically based engineering analytical tools. New sections added on the assemblage of element equations, and an important new comparison between finite element analysis and other analytical methods, showing the advantages and disadvantages of each. The book introduces the basic concepts of the finite element method in the static and dynamic analysis of beam, plate, shell and solid structures, discussing how the method works, the characteristics of a finite element approximation and how to avoid the pitfalls of finite element modeling. Presenting the finite element theory as simply as possible, the book allows readers to gain the knowledge required when applying powerful FEA software tools. Further, it describes modeling procedures, especially for reinforced concrete structures, as well as structural dynamics methods, with a particular focus on the seismic analysis of buildings, and explores the modeling of dynamic systems. Featuring numerous illustrative examples, the book allows readers to easily grasp the fundamentals of the finite element theory and to apply the finite element method proficiently. This book presents the latest developments in structural dynamics with particular emphasis on the formulation of equations of motion by finite element methods and their solution using microcomputers. The book discusses the use of frequency-dependent shape functions for realistic finite element modelling, as opposed to the approximate conventional shape functions. A useful feature of the book in handling the forced vibration problem is the separation of the solution into two parts; the steady state and transient. Advanced topics such as substructure and synthesis are viewed in a modern unified manner. A complete listing of the finite element programme NATVIB used is given. The Finite Element Method in Engineering, Fifth Edition, provides a complete introduction to finite element methods with applications to solid mechanics, fluid mechanics, and heat transfer. Written by bestselling author S.S. Rao, this book provides students with a thorough grounding of the mathematical principles for setting up finite element solutions in civil, mechanical, and aerospace engineering applications. The new edition of this textbook includes examples using modern computer tools such as MatLab, Ansys, Nastran, and Abaqus. This book discusses a wide range of topics, including discretization of the domain; interpolation models; higher order and isoparametric elements; derivation of element matrices and vectors; assembly of element matrices and vectors and derivation of system equations; numerical solution of finite element equations; basic equations of fluid mechanics; inviscid and irrotational flows; solution of quasi-harmonic equations; and solutions of Helmholtz and Reynolds equations. New to this edition are examples and applications in Matlab, Ansys, and Abaqus; structured problem solving approach in all worked examples; and new discussions throughout, including the direct method of deriving finite element equations, use of strong and weak form formulations, complete treatment of dynamic analysis, and detailed analysis of heat transfer problems. All figures are revised and redrawn for clarity. This book will benefit professional engineers, practicing engineers learning finite element methods, and students in mechanical, structural, civil, and aerospace engineering. Examples and applications in Matlab, Ansys, and Abaqus Structured problem solving approach in all worked examples New discussions throughout, including the direct method of deriving finite element equations, use of strong and weak form formulations, complete treatment of dynamic analysis, and detailed analysis of heat transfer problems More examples and exercises All figures revised and redrawn for clarity Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be of set by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order models; - Shows how frequency shifting and the number of degrees of freedom affect the desirability and accuracy of using dynamic condensation; - Answers the challenges involved in dealing with undamped and non-classically damped models; - Requires little more than first-engineering-degree mathematics and highlights important points with instructive examples. Academics working in research on structural dynamics, MEMS, vibration, finite elements and other computational methods in mechanical, aerospace and structural engineering will find Model Order Reduction Techniques of great interest while it is also an excellent resource for researchers working on commercial finite-
element-related software such as ANSYS and Nastran. An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis. This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

Copyright code: d163b82a32fca0003930415d95d2ed39